
fax id: 3450

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600
January 21, 1997 - Revised October 30, 1997

Designing a Low-Cost USB Mouse with the Cypress
Semiconductor CY7C63000 USB Controller

Introduction
The Universal Serial Bus (USB) is an industrial standard se-
rial interface between a computer and peripherals such as a
mouse, joystick, keyboard, etc. This application note de-
scribes how a cost-effective USB opto-mechanical mouse
can be built quickly using the Cypress Semiconductor sin-
gle-chip CY7C63000 USB controller. The document starts
with the basic operations of an opto-mechanical mouse fol-
lowed by an introduction to the CY7C63000 USB controller.
A schematic of the USB mouse and its connection details can
be found in the Hardware Implementation Section.

The software section of this application note describes the
architecture of the firmware required to implement the mouse
function. Several sample code segments are included to as-
sist in the explanation. The binary code of the complete
mouse firmware is available free of charge from Cypress
Semiconductor. Please contact your local Cypress sales of-
fice for details.

This application note assumes that the reader is familiar with
the CY7C63000 USB controller and the Universal Serial Bus.
The CY7C63000 data sheet is available from the Cypress
web site at www.cypress.com. USB documentation can be
found at the USB Implementers Forum web site at
www.usb.org.

USB Mouse Basics
USB has been gaining popularity due to it’s simple connec-
tion, plug and play feature, and hot insertion capability. There
are several kinds of USB pointing devices available in the
market. The opto-mechanical mouse is the most popular type
because it provides relatively high resolution and works on a
wide range of surfaces.

Basically, an opto-mechanical mouse has a rubber track ball
that is coupled to two roll bars as shown in Figure 1. The
“stabilizer” is a roller that provides the third contact point for
the mouse ball.

One roll bar keeps track of the X-axis movement while the
other one keeps track of the Y-axis movement. There is a
slotted wheel at one end of each roll bar. An LED is installed
on one side of the wheel with two photo transistors positioned
on the other side as shown in Figure 2.

The photo-transistor outputs allow the mouse to detect wheel
motion and determine the motion direction. For example, from
the starting position shown, wheel motion to the left would
look like Figure 3.

From the starting position shown, slotted wheel motion to the
right would look like Figure 4.

From the outputs of the photo-transistors, the mouse chip de-
termines the direction and calculates the distance when the
mouse is moved.

Figure 1. Mechanical Hardware

Figure 2. Opto-Mechanical Detail

Figure 3. Slotted Wheel Moves Left

Figure 4. Slotted Wheel Moves Right

mouse ball

X-axis roller

Y-axis roller

slotted wheel

stabilizer

slotted wheel

LED

photo transistors

LED

slotted
wheel

two photo
transistors PT1 PT2

PT1

PT2 on

off

PT1

PT2 on

off

Designing a Low-Cost USB Mouse

2

The resolution is the smallest motion the mouse can detect,
measured in dots per inch (DPI). A typical opto-mechanical
mouse has a resolution in the 200 to 400 DPI range. The
mechanical dimensions of the mouse hardware limit the max-
imum achievable resolution.

USB provides the plug-and-play feature that is not supported
in RS-232 and PS/2 interfaces. The USB interface uses a
four-pin connector with positive retention. A 28 AWG twisted
pair is used for differential signaling and two 20 to 30 AWG
wires are used to supply power and ground. No cable shield-
ing is necessary for a mouse application.

Introduction to CY7C63000
The CY7C63000 is a high performance 8-bit RISC microcon-
troller with an integrated USB Serial Interface Engine (SIE).
The architecture implements 34 commands that are opti-
mized for USB applications. The CY7C63000 has built-in
clock oscillator and timers as well as programmable current
drivers, and pull-up resistors at each I/O line. High perfor-
mance, low-cost human-interface type computer peripherals
such as mouse, joystick, and gamepad can be implemented
with minimum external components and firmware effort.

Clock Circuit

The CY7C63000 has a built-in clock oscillator and PLL-based
frequency doubler. This circuit allows a cost effective 6 MHz
ceramic resonator to be used externally while the on-chip
RISC core runs at 12 MHz.

USB Serial Interface Engine (SIE)

The operation of the SIE is totally transparent to the user. In
the receive mode, USB packet decode and data transfer to
the endpoint FIFO are automatically done by the SIE. The SIE
then generates an interrupt request to invoke the service rou-
tine after a packet is unpacked.

In the transmit mode, data transfer from the endpoint and the
assembly of the USB packet are handled automatically by the
SIE.

General Purpose I/O

The CY7C63000 has 12 general purpose I/O lines divided
into 2 ports: Port 0 and Port 1. One such I/O circuit is shown
in Figure 5. The output state can be programmed according
to Table 1 below. Writing a “0” to the Data Register will drive
the output Low and allow it to sink current.

Instead of supporting a fixed output drive, the CY7C63000
allows the user to select an output current level for each I/O
line. The sink current of each output is controlled by a dedi-
cated 8-bit Isink Register. The lower 4-bits of this register con-
tains a code selecting one of sixteen sink current levels. The
upper 4-bits are reserved and must be written as zeros. The
output sink current levels of the two I/O ports are different. For
Port 0 outputs, the lowest drive strength (0000) is about 0.2
mA and the highest drive strength (1111) is about 1.0 mA.
These levels are insufficient to drive the LEDs in a mouse.

Port 1 outputs are specially designed to drive high-current
applications such as LEDs. Each Port 1 output is much stron-
ger than their Port 0 counterparts at the same drive level set-
ting. In other words, the lowest and highest drive for Port 1
lines are 3.2 mA and 16 mA respectively.

Each General Purpose I/O (GPIO) is capable of generating
an interrupt to the RISC core. Interrupt polarity is selectable
on a per bit basis using the Port Pull-up register. Setting a Port
Pull-up register bit to “1” will select a rising edge trigger for the
corresponding GPIO line. Conversely, setting a Port Pull-up
Register bit to “0” will select a falling edge trigger. The inter-
rupt triggered by a GPIO line is individually enabled by a ded-
icated bit in the Port Interrupt Enable Registers. All GPIO in-
terrupts are further masked by the Global GPIO Interrupt
Enable Bit in the Global Interrupt Enable Register.

Table 1. Programmable Output State

Port Data bit Port Pull-up bit Output State

0 X sink current “0”

1 0 pull-up resistor “1”

1 1 High-Z

Figure 5. One General Purpose I/O Line

GPIO
Pin

VCC

Isink

DAC
Port Isink
Register

Port Data
Register

Port Pull-Up
Register

16 KΩ
Schmitt
Trigger

Data Bus

Designing a Low-Cost USB Mouse

3

The Port Pull-up Registers are located at I/O address 0x08
and 0x09 for Port 0 and Port 1 respectively. The Data Regis-
ters are located at I/O address 0x00 and 0x01 for Port 0 and
Port 1 respectively. The Port 0 and Port 1 Interrupt Enable
Registers are at addresses 0x04 and 0x05 respectively.

Wake-Up Interrupt

Power management is paramount in many USB applications.
To conserve power, the CY7C63000 supports an externally
programmable interrupt input to wake up the microcontroller
from the suspend mode when the mouse is moved or when a
button is pressed. The suspend mode causes the microcon-
troller to shut down most of its functions such as the clock
circuit, the RISC core, the timer, and part of the SIE. In the
mouse application, a high percentage of the power is con-
sumed by the LEDs. Therefore, the CY7C63000 should be
programmed to turn off the LEDs before entering the suspend
mode. With the LEDs off, the CY7C63000 can no longer de-
tect any mouse movements although button closures are still
recognized (because pressing a button causes an interrupt).
This problem can be solved by using the wake-up interrupt
that wakes up the microcontroller, checks for mouse move-
ment, and then goes back to suspend mode.

The wake-up interrupt can be implemented by connecting the
CEXT pin to VCC with a resistor and to GND with a capacitor.
Before the firmware puts the microcontroller into the suspend
mode, it writes a zero to the Cext register at address 0x22 to
discharge the external capacitor. Then, to start timing a one
is written to the Cext register to allow the RC circuit to begin
charging. A wake-up interrupt is generated to the RISC core
when the external capacitor is charged up to nominal 2.75V
(45% to 65% of Vcc) by the external resistor. The duration
between successive wake-ups is controlled by the RC con-
stant of the external resistor and capacitor.

Hardware Implementation
Figure 6 is the schematic for a mouse application.

Photo transistor pins of Port 0 are programmed by writing a
zero to the Data Registers which drives the output low. Then
set the value of the Port Isink Register to the sink current
value. One of sixteen sink current values could be selected.
This is done to bias the photo transistors for correct operation.

Button pins of Port 0 are programmed to accept active-low
inputs with internal pull-up resistors enabled. This is accom-
plished by setting all bits in the Port 0 Data Register to “1” and
setting the contents of the Port 0 Pull-up Register to all “0”s.

Bits 4 to 6 of Port 0 are connected to the left, right, and middle
buttons respectively. Bits 0 and 1 are connected to the left and
right photo transistors of the horizontal axis respectively. Bits
2 and 3 are connected to left and right photo transistors of the
vertical axis respectively.

The two LEDs are connected in series to bit 0 of Port 1. The
LEDs are turned off in the suspend mode to conserve power.
The LEDs are switched on only when the mouse wakes up.
Because the sink current of each GPIO line can be set to one
of sixteen levels, the user can adjust the light output of the
LEDs to match the sensitivity of a wide range of photo tran-
sistors.

The CEXT pin of the CY7C63000 is connected to an external
RC timing circuit formed by R2 and C1. The wake-up time is
set to about 20 msec to achieve a good balance between
wake-up response time and power savings.

A 6 MHz ceramic resonator is connected to the clock inputs
of the microcontroller. This component should be placed as
close to the microcontroller as possible.

According to the USB specification, the USB D– line of a
low-speed device (1.5 Mbps) should be tied to a voltage
source between 3.0V and 3.6V with a 1.5K ohms pull-up ter-
minator. The CY7C63000 eliminates the need for a 3.3V reg-
ulator by specifying a 7.5 Kohm resistor connected between
the USB D– line and the nominal 5V Vcc.

Designing a Low-Cost USB Mouse

4

Figure 6. Hardware Implementation

Designing a Low-Cost USB Mouse

5

Firmware Implementation
USB Interface

All USB Human Interface Device (HID) class applications
such as a mouse, follow the same USB start-up procedure.
The procedure is as follows (see Figure 7):

Device Plug-in

When a USB device is first connected to the bus, it is powered
but remains non-functional waiting for a bus reset. The pull-up
resistor on D– notifies the hub that a low-speed (1.5 Mbps)
device has just been connected.

Bus Reset

The host recognizes the presence of a new USB device and
resets it (see Figure 8).

Enumeration

The host sends a SETUP packet followed by IN packets to
read the device description from default address 0. When the
description is received, the host assigns a new USB address
to the device. The device begins responding to communica-
tion with the newly assigned address, while the host contin-
ues to ask for information about the device description, con-
figuration description and HID report description. Using the
information returned from the device, the host now knows the
number of data endpoints supported by the device (in a USB
mouse, there is only one data endpoint). At this point, the
process of enumeration is completed. See Figures 9, 10 and
11.

Figure 7. USB Start-Up Procedure

Device Plug-in

Bus Reset

Enumeration

Data Acquisition/
Transfer

Figure 8. Reset Interrupt Service Routine

Figure 9. Endpoint 0 ISR

Start

• Set up stack pointer

• Enable all interrupts being used

Main Loop

• Responds to
SETUP packet
according to the
parsing structure

N

Y

End Point 0

received a
SETUP packet

return

Designing a Low-Cost USB Mouse

6

Data Acquisition/Transfer

The firmware polls the mouse buttons and the photo transis-
tors. The status of the buttons as well as the horizontal and
vertical displacements are sent to the host using endpoint 1.
When the host issues IN packets to retrieve data from the
device, the device returns three bytes of data as shown in
Figure 12. Figure 13 illustrates response to an e14, and 15.)

Figure 12. Data Organization for USB Mouse

Figure 10. USB Standard Request Parsing Structure

host to dev
dev recip

0x00

host to dev
inter recip

0x01

host to dev
endp recip

0x02

dev to host
dev recip

0x80

dev to host
inter recip

0x81

dev to host
endp recip

0x82

get status
0x00

clr feature
0x01

set feature
0x3

set addr
0x05

get desc
0x06

set desc
0x07

get config
0x08

set config
0x09

get inter
0x0A

set inter
0x0B

synch
0x0C

bmrequest type

brequest

Figure 11. USB HID Class Request Parsing Structure

host to dev
inter recip

0x21

dev to host
inter recip

0xA1

get_protocol
 0x03

bmrequest type

brequest

get_idle
0x02

get_reportl
0x01

set_protocol
0x0B

set_idle
0x0A

set_reportl
0x09

Bit 7 Bit 0

N/A N/A N/A N/A N/A Mid Right Left Byte 0 - buttons

Bit 7 Bit 0

HD7 HD6 HD5 HD4 HD3 HD2 HD1 HD0 Byte 1 - Horizontal
displacement

Bit 7 Bit 0

VD7 VD6 VD5 VD4 VD3 VD2 VD1 VD0 Byte 2 - Vertical
displacement

Designing a Low-Cost USB Mouse

7

Figure 13. Endpoint 1 Interrupt Service Routine

Figure 14. Mouse State Diagram

Figure 15. State Definitions

Endpoint_1

• Prepare data in Endpoint_1 DMA
buffer

• Re-enable interrupts

Return

STATE 0

STATE 3

STATE 2

rh=0

rh=1

lh=1

lh=1

rh=1
STATE 1

lh=0

lh=0rh=0

r/l=0

r/l=11

r/l=01 r/l=10

0lh = left horizontal photo transistor
rh = right horizontal photo transistor
r/l = right / left bit state

11

0 0

State 3 State 2 State 0 State 1 State 3

Left horizontal
photo transistor output

Right horizontal
photo transistor output

Left movement Right movement

Designing a Low-Cost USB Mouse

8

The byte order and bit field positions are defined by the USB
HID specification.

USB Descriptors

As stated earlier, the USB descriptors hold information about
the device. There are several types of descriptors, which will
be discussed in detail below. All descriptors have certain
characteristics in common. Byte 0 is always the descriptor
length in bytes and Byte 1 is always the descriptor type. Dis-
cussion of these two bytes will be omitted from the following
descriptions. The rest of the descriptor structure is dependent
on the descriptor type. An example of each descriptor will be
given. Descriptor types are device, configuration, interface,
endpoint, string, report, and several different class descrip-
tors.

Device Descriptor

This is the first descriptor the host requests from the device.
It contains important information about the device. The size
of this descriptor is 18 bytes. A list follows:

• USB Specification release number in binary-coded deci-
mal (BCD) (2 bytes)

• Device class (1 byte)

• Device subclass (1 byte)

• Device protocol (1 byte)

• Max packet size for Endpoint 0 (1 byte)

• Vendor ID (2 bytes)

• Product ID (2 bytes)

• Device release number in BCD (2 bytes)

• Index of string describing Manufacturer (Optional) (1 byte)

• Index of string describing Product (Optional) (1 byte)

• Index of string containing serial number (Optional) (1 byte)

• Number of configurations for the device (1 byte)

Example of a device descriptor

Descriptor Length (18 bytes)
Descriptor Type (Device)
Complies to USB Spec Release (1.00)
Class Code (insert code)
Subclass Code (0)
Protocol (No specific protocol)
Max Packet Size for endpt 0 (8 bytes)
Vendor ID (Cypress)
Product ID (USB Joystick)
Device Release Number (1.03)
String Describing Vendor (None)
String Describing Product (None)
String for Serial Number (None)
Possible Configurations (1)

Configuration Descriptor

The configuration descriptor is 9 bytes in length and gives the
configuration information for the device. It is possible to have
more than one configuration for each device. When the host
requests a configuration descriptor, it will continue to read
these descriptors until all configurations have been received.
A list of the structure follows:

• Total length of the data returned for this configuration (2
bytes)

• Number of interfaces for this configuration (1 byte)

• Value used to address this configuration (1 byte)

• Index of string describing this configuration (Optional) (1
byte)

• Attributes bitmap describing configuration characteristics
(1 byte)

• Maximum power the device will consume from the bus (1
byte)

Example of configuration descriptor

Descriptor Length (9 bytes)
Descriptor Type (Configuration)
Total Data Length (34 bytes)
Interfaces Supported (1)
Configuration Value (1)
String Describing this Config (None)
Config Attributes (Bus powered)
Max Bus Power Consumption (100mA)

Interface Descriptor

The interface descriptor is 9 bytes long and describes the
interface of each device. It is possible to have more than one
interface for each device. This descriptor is set up as follows:

• Number of this interface (1 byte)

• Value used to select alternate setting for this interface (1
byte)

• Number of endpoints used by this interface. If this number
is zero, only endpoint 0 is used by this interface (1 byte)

• Class code (1 byte)

• Subclass code (1 byte)

• Protocol code (1 byte)

• Index of string describing this interface (1 byte)

Example of interface descriptor

Descriptor Length (9 bytes)
Descriptor Type (Interface)
Interface Number (0)
Alternate Setting (0)
Number of Endpoints (1)
Class Code (insert code)
Subclass Code (0)
Protocol (No specific protocol)
String Describing Interface (None)

Endpoint Descriptor

The endpoint descriptor describes each endpoint, including
the attributes and the address of each endpoint. It is possible
to have more than one endpoint for each interface. This de-
scriptor is 7 bytes long and is set up as follows:

• Endpoint address (1 byte)

• Endpoint attributes. Describes transfer type (1 byte)

• Maximum packet size this endpoint is capable of transfer-
ring (2 bytes)

• Time interval at which this endpoint will be polled for data
(1 byte)

Example of endpoint descriptor

Descriptor Length (7 bytes)
Descriptor Type (Endpoint)

Designing a Low-Cost USB Mouse

9

Endpoint Address (IN, Endpoint 1)
Attributes (Interrupt)
Maximum Packet Size (6 bytes)
Polling Interval (10 ms)

HID (Class) Descriptor

The class descriptor tells the host about the class of the de-
vice. In this case, the device falls in the human interface de-
vice (HID) class. This descriptor is 9 bytes in length and is set
up as follows:

• Class release number in BCD (2 bytes)

• Localized country code (1 byte)

• Number of HID class descriptor to follow (1 byte)

• Report descriptor type (1 byte)

• Total length of report descriptor in bytes (2 bytes)

Example of HID class descriptor

Descriptor Length (9 bytes)
Descriptor Type (HID Class)
HID Class Release Number (1.00)
Localized Country Code (USA)
Number of Descriptors (1)
Report Descriptor Type (HID)
Report Descriptor Length (63 bytes)

Report Descriptor

This is the most complicated descriptor in USB. There is no
set structure. It is more like a computer language that de-
scribes the format of the device’s data in detail. This descrip-
tor is used to define the structure of the data returned to the
host as well as to tell the host what to do with that data. An
example of a report descriptor can be found below.

A report descriptor must contain the following items: Input (or
Output or Feature), Usage, Usage Page, Logical Minimum,
Logical Maximum, Report size, and Report Count. These are
all necessary to describe the device’s data.

Example of report descriptor

Usage Page (Generic Desktop)
Usage (Mouse)
Collection (Application)

Usage (Pointer)
Collection (Physical)

Usage Page (Buttons)
Usage Minimum (01)
Usage Maximum (03)
Logical Minimum (0)
Logical Maximum (1)
Report Count (3)
Report Size (1)
Input (Data, Variable,
 Absolute)
Report Count (1)
Report Size (5)
Input (Constant)
Usage Page (Generic Desk-

top)
Usage (X)
Usage (Y)
Logical Minimum (-127)
Logical Maximum (127)

Report Size (8)
Report Count (2)
Input (Data, Variable,
 Variable)

End Collection
End Collection

Input items are used to tell the host what type of data will be
returned as input to the host for interpretation. These items
describe attributes such as data vs. constant, variable vs. ar-
ray, absolute vs. relative, etc.

Usages are the part of the descriptor that defines what should
be done with the data that is returned to the host. From the
example descriptor, Usage (X) tells the host that the data is
to be used as an X axis input. There is also another kind of
Usage tag found in the example called a Usage Page. The
reason for the Usage Page is that it is necessary to allow for
more than 256 possible Usage tags. Usage Page tags are
used as a second byte which allows for up to 65536 Usages.

Logical Minimum and Logical Maximum are used to bound
the values that a device will return.

Report Size and Report Count define the structures that the
data will be transferred in. Report Size gives the size of the
structure in bits. Report Count defines how many structures
will be used. In the example descriptor above, the lines Re-
port Size (8) and Report Count (2) define the axes of the
mouse. There are now two eight-bit fields defined, one for the
X axis and one for the Y axis.

Collection items are used to show a relationship between two
or more sets of data. End Collection items simply close the
collection.

It is important to note that all examples given here are merely
for clarification. They are not necessarily definitive solutions.

A more detailed description of all items discussed here as
well as other descriptor issues can be found in the “Device
Class Definition for Human Interface Devices (HID)” revision
1.0d and in the “Universal Serial Bus Specification” revision
1.0, chapter 9. Both of these documents can be found on the
USB world wide web site at http://www.usb.org/.

Power Management

Power management on USB devices involves the issues de-
scribed in Figures 16 and 17. The LEDs are turned off before
the device goes into suspend and are turned on right after the
device gets out of suspend.

Displacement Calculation

The outputs of the photo transistors for one axis transition
through the states shown in Figure 14. A transition from one
state to the next indicates mouse movement in that direction.
Based on the position of the photo transistors, a
counter-clockwise state change increments the mouse posi-
tion counter and a clockwise state change decrements the
position counter. The displacements are calculated based on
the previous location of the mouse.

Conclusion
The two main enabling factors of the proliferation of the USB
devices are cost and functionality. The CY7C63000 meets
both requirements by integrating the USB SIE and multi-func-
tion I/Os with a USB optimized RISC core.

Designing a Low-Cost USB Mouse

10

Figure 16. One msec Interrupt Service Routine

1 ms

• Clear watchdog
timer

USB bus
activity

N

Y
• Decrement soft-

ware counter

software
counter = 0

N

Y

• Enable global interrupts except Cext
and 128 µs

return

• Load software counter

• Clear bus activity bit

Remote
Wakeup
process?

N

Y

• Increment 10 msec wakeup
counter

• Clear Cext

• Set Cext to High-Z

• Enable Cext interrupts

Remote
Wakeup
Enabled?

• Load software counter

• Suspend µC and wait for interrupts

Y

N

Designing a Low-Cost USB Mouse

© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Figure 17. Remote Wake-Up Interrupt

Y

N

Compare Port 0 value

Same

to stored Port 0 value
Check for mouse or a button press

Write RESUME bit
03h to USB Status and

Control reg.

Clear RESUME bit
write 00h to USB Status

and Control reg

Return

If same, no mouse movement

If different, wake-up host

Send resume signal for 10 msLoop for 10 ms
(remember to reset

WD timer)

Remote Wake-Up

Clear Cext

Set Cext to High Z

